[image: image6.png]OHIO

[image: image7.png]*
*
*
*
*

TABLE OF CONTENTS

Title
Page

1Section 1
Introduction

11.1
Overview

11.2
Purpose of CAT and CATSim

21.3
Player and Gazebo

21.4
CAT System Architecture and Components

31.4.1
World Model

31.4.2
Mission Planner

41.4.3
Assets Allocation

51.4.4
Platform Path Planner

51.4.5
User Interface

51.4.6
Communication Channel

61.4.7
Static Sensors

61.4.8
Autonomous Aerial Vehicle (AAV) Controller

61.4.9
Autonomous Ground Vehicle (AGV) Local Navigator

8Section 2
Installation

82.1
Overview

82.2
System Requirements

82.3
Installing Prerequisite Libraries

92.3.1
SWIG – Simplified Wrapper and Interface Generator

92.3.2
PROJ.4 – Cartographic Projections Library

92.3.3
GDAL – Geospatial Data Abstraction Library

102.3.4
GSL – GNU Scientific Library

102.3.5
ODE – Open Dynamics Engine

102.3.6
OPENCV – Open Source Computer Vision Library

102.3.7
wxPython – Python wxWidgets Library

122.3.8
FreeGlut Development Support

122.4
Installing SVN Client

132.5
Acquiring CATSim

132.6
Installing Gazebo and Player

132.6.1
Configuring Environment Variables

142.6.2
Gazebo

152.6.3
Player

162.7
Installing CATSim

162.8
Reference Documentation

162.8.1
Library Reference

162.8.2
Gazebo/Player Reference and Documentation

17Section 3
EXECUTING CATSim

183.1
The XML Configuration File

203.2
“CATSIM_DIR” Environment Variable and Simulation Attributes

203.3
Simulation State

203.4
Process State

213.5
Running an Example Configuration File

24Section 4
Module Descriptions

244.1
Data Structures

244.1.1
World model

244.1.2
Task Structure

254.1.3
Asset Status

254.1.4
Target Status

264.1.5
Task-Asset List

264.1.6
Platform Paths

264.2
Shared Memories

274.2.1
World Shared Memory

274.2.2
Task-List Shared Memory

274.2.3
Path-List Shared Memory

274.3
Module Descriptions

274.3.1
Mission Planner

284.3.2
Asset Allocation Module

284.3.3
Platform Path Planner

294.3.4
User Interface

294.3.5
Communication Channel

304.3.6
Static Sensors

304.3.7
AAV controller & AGV Local Navigator

304.4
Objects added to Gazebo

304.4.1
SensorNet

314.4.2
INS

324.4.3
OsuHeli

324.4.4
Osu2AT

Section 1 Introduction

1.1 Overview

The Cooperative Algorithm Testbed (CAT) is being developed by the Cooperative Center of Control Science (CCCS) to facilitate the research, implementation, and testing of multi-agent cooperative control algorithms and systems. CAT consists of both physical entities (ground robots, aerial robots, and sensors), and architectural framework for software development, and a simulation environment for initial testing and development prior to deployment on the actual hardware.

This document describes the architecture of the CAT system and the simulation and testing environment. It also describes the installation of the Cooperative Algorithm Testbed Simulation (CATSim) software, and provides initial examples of a multi-agent system implemented within the architecture.

1.2 Purpose of CAT and CATSim

The purpose of CAT is to support the test and verification of the multi-agent cooperative algorithms developed in the Cooperative Center of Control Science (CCCS). The CAT architecture defines and implements a software architecture that specifies the roles and relationships among various operational algorithms that together generate behavior to achieve goals.

The CAT system is designed to facilitate the realization of algorithms. It is hoped that the framework will provide reusable modules, allowing researchers to implement specific algorithms or modules of interest to them without having to re-implement an entire multi-agent system from scratch.

Using the CAT is envisioned as a two-step process. First, algorithms and modules will be implemented and tested in the CATSim simulation environment. After a sufficient level of functionality is achieved in simulation, the algorithms can be transitioned to the hardware with a minimum number of software changes. This is accomplished using the open source Player/Gazebo system.

1.3 Player and Gazebo

The player software provides networked device interfaces for robots, sensors, actuators, and other accessories. It implements a client-server model, allowing control and data acquisition software to be written in a portable way. It inherently allows for multiple concurrent client connections.

Gazebo is a multi-robot simulator for a 3 dimensional outdoor environment. It generates realistic sensor feedback and physically plausible motions and interactions. Gazebo presents a standard player interface, which allows it to be substituted for actual robots with minimal software change to the Player clients.

For more information on Player and Gazebo, please refer to the references at the end of this document.

1.4 CAT System Architecture and Components

Figure 1 shows the system architecture and the components of CAT. The components are:

· World Model

· Mission Planner

· Assets Allocation

· Platform Path Planner

· User Interface

· Communication Channel

· Static Sensors

· AAV controller

· AGV Local Navigator

These components are provided as modules in the current version of the CATSim software, although in some cases as little more than software shells and proof of concept implementations.

[image: image1.png]The Cooperative
Test Bed System

AAV Stams

Target Status

=

Terrain Info

AGV Stams
=

g

Static Sensor
Status

Figure 1. The Cooperative Test Bed System Architecture and Components

1.4.1 World Model

CAT is currently implemented with a centralized world model. The world model contains global information about the state of the system under test or simulation, including vehicle status and location, target status and location, terrain information and map data, and sensor information. This does not preclude individual assets having local information and models. Data for the world model is supplied either through communication channels (at present from aerial robots, ground robots, and sensor nodes), at system initialization, or from commanders and users interacting with the system through the user interface.

1.4.2 Mission Planner

One has to define a mission for a CAT experiment. The mission includes the position and size of the scenario, the Goals to accomplish, the number and capability of heterogeneous agents (robots, either AGV or AAV), other facilities (like a static sensor net) and targets, as applicable.

We envision a number of different mission types. Two simple examples are “search a region and destroy any found target” and “convey a group of AGV through a hostile terrain”.

1.4.2.1 Required Functionality:

· Initially decompose the mission into multiple tasks with different priorities;

· Create, modify, or delete tasks in real time due to events or changing data in the world model.

1.4.2.2 Potential Algorithms:

· Scheduling algorithm: assign different tasks with different priority so that they can be finished one by one with highest time efficiency

· Threat Assessment algorithm: identify new threats and targets and create tasks to handle them.

Note: The event-task pairs can be predefined.

1.4.3 Assets Allocation

1.4.3.1 Required Functionality:

· Assign agents to tasks according to the task priority and agent capability: during the mission, the “asset allocation” module is allowed to reassign agents to different tasks.

· Monitor the task-asset list for changes in tasks or asset status.

1.4.3.2 Potential Algorithms:

· Resource allocation algorithm: allocate limited number of agents to existing tasks with different priority to achieve highest efficiency. The algorithm should consider the agent capability constraints.

1.4.3.3 Constraints:

· CANNOT assign an agent to more than one task;

· All tasks need not be assigned to an agent at any given time;

· Multiple agents can be assigned to one task, forming a “team”.

1.4.4 Platform Path Planner

1.4.4.1 Required Functionality:

· Generate a preliminary path for each agent to follow: the preliminary path consists of a series of waypoints and constraints;

· Regenerate paths when there is a change in the team;

· Regenerate paths due to changes of status: for example, when a ground vehicle is stuck and new terrain or obstacle information is available.

1.4.4.2 Potential Algorithms:

· Cooperative path-planning algorithm: when a team of agents is concerned, the path planner has to generate “cooperative” paths for each team member so that the task is executed with high efficiency; safety issues may be concerned here too.

· Global path-planning algorithm: based on the terrain information acquired from different agents.

1.4.5 User Interface

1.4.5.1 Required Functionality:

· Allow user and commander to provide information, intentions, or choices and to control the experiment;

· Report mission status to the user: potentially including the current existing tasks, the agent assignment, agent planned path, current agent position, the available terrain information and the target status, as applicable.

1.4.6 Communication Channel

The communication channel serves two purposes. It represents either the real of simulated data communication system. It also represents the data processing or reformatting at the receiving end of a transmission.

1.4.6.1 Required Functionality:

· Send planned paths to every agent;

· Obtain information from the agents and other facilities like the static sensors: the information is then used to update the “world model”.

1.4.7 Static Sensors

Static sensors represent autonomous sources of information deployed in the world. The could be sensor motes, image acquisition and processing, radar or laser sensor, or any other sensor with a fixed location not attached to a robot agent. This category could potentially include moving sensors, if the motion is not controlled within the experiment (for example, a satellite).

1.4.7.1 Required Functionality:

· Sense activity of interest, for example the presence of movement of a suspicious object

· Report position via a communication channel.

1.4.8 Autonomous Aerial Vehicle (AAV) Controller

1.4.8.1 Required Functionality:

· Control an AAV to follow a given path, i.e. a series of waypoints in 3-D environment;

· Generate local paths based on local sensor data, applicable;

· Report own status, terrain information, sensor, and target information.

1.4.8.2 Potential Algorithms:

· AAV waypoints following controller: dealing with the AAV dynamics.

· Local onboard cooperation and collision avoidance algorithms: for the safety of each AAV, the onboard cooperation can be achieved through short-range communication or without physical communication, for instance, following predesigned safety rules.

1.4.9 Autonomous Ground Vehicle (AGV) Local Navigator

1.4.9.1 Required Functionality:

· Control an AGV to follow a given path through an unknown terrain: It may need to adjust the path to deal with obstacles or other features of the environment that are detected in real time;

· Local onboard Cooperation and Collision avoidance with other AGVs, if applicable.

· Report own status, terrain information, sensor and target information.

1.4.9.2 Potential Algorithms:

· Off-road navigation algorithms, for example circumnavigating obstacles while still keeping the preliminary path points within acceptable deviation;

· Local onboard cooperation and collision avoidance algorithms: for the safety of each AGV, the onboard cooperation can be achieved through short-range communication or without physical communication, for instance, following specified safety rules.

Section 2 Installation

2.1 Overview

CATSim was designed as an extension of the Gazebo/Player software package. Gazebo is a 3D multi-robot simulator for outdoor environments, complete with realistic sensor feedback and an accurate simulation of rigid-body physics. Player is a cross-platform robot device interface and server. With Player’s standard interface, all algorithms developed for simulation in Gazebo can be easily deployed on the multiple robot platforms in the cooperative test bed.

2.2 System Requirements

In order to install and run CATSim, several hardware and software requirements must be met. The target machine should have a reasonably fast processor and capable graphics card to support the 3D rendering needs of Gazebo. Either a clean hard drive or empty partition on an existing drive is needed for a full installation of Linux. In addition, approximately 1-1.5 gigabytes of free space are needed temporarily during the installation phase.

This installation guide was written assuming a full installation of Red Hat Enterprise Linux – Desktop version 4. Other recent distributions may also work, as long as they provide recent GNU development tools, GTK2 and Qt graphics toolkits, Python, and a full set of libraries. The appropriate ATI or NVIDIA graphics driver should be installed to take advantage of hardware OpenGL acceleration. Although not required for Gazebo to run, hardware acceleration is strongly recommended.

This guide assumes a working knowledge of Linux and the ability to compile and install software from source.

2.3 Installing Prerequisite Libraries

This section describes the installation of all required libraries from their source distributions. The prerequisite libraries are included in the installation CD available from OSU. They are alternatively available directly from their project website; however, the installation procedure was tested only with a specific version of each library, so verify the version numbers match before installation.

It is assumed the libraries in this section will be installed to the default prefix of /usr/local. Root access to the target machine is required.

2.3.1 SWIG – Simplified Wrapper and Interface Generator

http://www.swig.org/
Unpack, compile, and install the SWIG library.

$ tar -xzf swig-1.3.27.tar.gz

$ cd swig-1.3.27

$./configure

$ make

$ su

make install

2.3.2 PROJ.4 – Cartographic Projections Library

http://proj.maptools.org/
Unpack, compile, and install the PROJ.4 library.

$ tar -xzf proj-4.4.9.tar.gz

$ cd proj-4.4.9

$./configure

$ make

$ su

make install

2.3.3 GDAL – Geospatial Data Abstraction Library

http://www.remotesensing.org/gdal/
Unpack, compile, and install the GDAL library. Note that parts of GDAL install into /usr/lib/python2_3/site-packages as well as /usr/local.

$ tar -xzf gdal-1.3.1.tar.gz

$ cd gdal-1.3.1.tar.gz

$./configure

$ make

$ su

make install

2.3.4 GSL – GNU Scientific Library

http://www.gnu.org/software/gsl/
Unpack, compile, and install the GSL library.

$ tar -xzf gsl-1.7.tar.gz

$ cd gsl-1.7.tar.gz

$./configure

$ make

$ su

make install

2.3.5 ODE – Open Dynamics Engine

http://ode.org/
Unpack the ODE library.

$ tar -xzf ode-0.5.tgz

$ cd ode-0.5

Open 'config/user-settings' and uncomment the line OPCODE_DIRECTORY=OPCODE. This will enable trimesh support within ODE which is needed for the road and terrain models in Gazebo.

$ make

$ su

cp -R include/* /usr/local/include/

cp lib/* /usr/local/lib/

2.3.6 OPENCV – Open Source Computer Vision Library

http://sourceforge.net/projects/opencvlibrary/
Unpack, compile, and install the OpenCV library.

$ tar -xzf opencv-0.9.7.tar.gz

$ cd opencv-0.9.7.tar.gz

$./configure

$ make

$ su

make install

2.3.7 wxPython – Python wxWidgets Library

http://www.wxpython.org/
Unpack the ODE library.

$ tar -xzf wxPython-src-2.6.2.1.tar.gz

$ cd wxPython-src-2.6.2.1.tar.gz

First, build wxWidgets. It is strongly recommended to build wxWidgets from a different directory as described.

$ mkdir bld

$ cd bld

$../configure --enable-gtk2 --with-opengl

$ make

$ su

make install

At this point the shared library links must be updated. Since the default installation directory of all the libraries is to /usr/local/lib, edit (as root) /etc/ld.so.conf and verify that /usr/local/lib is listed. The standard installation of Red Hat does not include this by default. If the path is not listed, the path should be added directly to /etc/ld.so.conf. Finally, update the links to the shared libraries by executing.

/sbin/ldconfig

Now, build the other libraries bundled with wxWidgets, needed for wxPython. Return to the bld directory created to build wxWidgets.

$ cd bld/contrib/src

$ make

$ su

make install

Build wxPython from the wxPython directory in the base wxPython-src-2.6.2.1 directory.

$ cd ../../../wxPython

$./setup.py build

$ su

./setup.py install

/sbin/ldconfig

Now verify wxPython is working.

$ cd .. (because this test does not work in the build subdirectory)

$ python

>>> from wxPython.wx import *

>>> [ctrl-d]

If no errors are reported, wxPython should be ready for Gazebo. If an ImportError is raised such as:

ImportError: libwx_gtk2_xrc-2.6.so.0: cannot open shared object file: No such file or directory

The links to the shared libraries are stale or have not been updated since the install of wxPython. See the section above to fix this.

Note that the wxPython installation writes files into /usr/lib/python2_3/site-packages and /usr/bin, as well as into /usr/local.

2.3.8 FreeGlut Development Support

Gazebo requires an implementation of the OpenGL Utility Toolkit. RedHat ships with an implementation known as Freeglut, however Gazebo also requires the development package to compile. The freeglut-devel package is included on the Redhat Enterprise Desktop 4 cds, but often is not installed by default. We include a copy of the RedHat rpm on our distribution CD. Install (as root) the freeglut-devel package.

rpm –i freeglut-devel-2.2.0-14.i386.rpm

2.4 Installing SVN Client

Subversion is a widely available software version control system. It offers network access to a repository. OSU CRL maintains such a repository, which is world readable, and contains the source code trees for CATSim and locally modified versions of Player and Gazebo.

First, check if Subversion exists on the target machine.

$ which svn

If Subversion is not installed, then the client software, which is all that is required to access an existing repository, can be installed from the svn_client-1.3.0.tar file included with the distribution. As root:

$ cd /usr/local

$ tar –xf (path to tar file)/svn_client-1.3.0.tar

Alternatively, the latest version, including both server and client, can be downloaded from http://subversion.tigris.org/
2.5 Acquiring CATSim

The source for Gazebo, Player, and the CATSim architecture are included in the installation CD available from OSU. However, one can also acquire the latest version of each is through the Subversion repository maintained at OSU. A Subversion client is needed to remotely access the repository.

The source modules can be downloaded from the repository using

$ svn checkout http://crlfs01.ece.ohio-state.edu/svn/osu_gazebo/trunk gazebo

$ svn checkout http://crlfs01.ece.ohio-state.edu/svn/osu_player/trunk player

$ svn checkout http://crlfs01.ece.ohio-state.edu/svn/catsim/trunk catsim

At this point, the directories gazebo, player, and catsim should exist in the current directory, each containing the appropriate source code.

Additionally, the code repository can be viewed through a web browser at http://crlfs01.ece.ohio-state.edu/. This page contains links to additional Subversion documentation. For further assistance with Subversion, consult the project page at http://subversion.tigris.org/.

2.6 Installing Gazebo and Player

It is assumed the latest version of both Gazebo and Player has been obtained through the Subversion repository at OSU. Reference documentation for Gazebo and Player is available at http://playerstage.sourceforge.net/.

2.6.1 Configuring Environment Variables

If the following procedures are followed, certain environment variables must be set and exported. The can be done manually from the shell prompt using:

$ export PYTHONPATH=/usr/local/lib/python2_3/site-packages/

$ export CATSIM_DIR=/home/username/catsim/
These variables can also be set permanently by including the above lines in the users ~/.bash_profile or globally in /etc/bashrc.

2.6.2 Gazebo

The configure script for gazebo is not consistent with the install location of the headers for the GDAL package. This must be resolved in order to build the gzbuilder utility for generating terrain.

$ su

cd /usr/local/include

mkdir gdal

cd gdal

ln -s ../gdal*.h .

Now one must run the autotools to generate the files necessary for the project configuration.

$ cd gazebo

$ aclocal

$ autoheader

$ autoconf

$ automake --add-missing

Now, run the configure script.

$./configure --prefix=/usr/local

Check the output of the configure script. Verify the following:

Gazebo will build Python bindings

Gazebo will build wxgazebo (GUI)

Gazebo will build the gzbuilder utility

Also verify the Road and Terrain models are included in the list to be built. If not, it is possible that trimesh support was not enabled in ODE. If this is the case, see the above instructions for compiling ODE with trimesh support. Reinstall ODE and re-run the gazebo configure script. Gazebo can now be built and installed

$ make

$ su

make install

To test gazebo, try running

$ wxgazebo

If everything is correct to this point, the program usage should be displayed. If any errors are received such as

Traceback (most recent call last):

 File "/usr/local/bin/wxgazebo", line 4, in ?

 from wxgazebo.main import main

ImportError: No module named wxgazebo.main

then there is some problem with the paths used when wxgazebo tried to import its modules. Check the $PYTHONPATH environment variable, as well as the contents of the directory itself.

modules to be imported.

Next, try to run an example world.

$ cd gazebo/worlds/ or $ cd /usr/local/share/gazebo/worlds

Edit example.world and locate the tag <model:ObserverCam>. Change the value

of the <renderMethod> attribute to one of GLXP, GLX, SGIX, or XLIB, depending on your system. If you are using hardware accelerated OpenGL, GLXP is probably the correct setting. A software OpenGL implementation usually works with the GLX setting. You may have to try each render method to find the one that works or works best on your system. Now try running the simulator,

$ wxgazebo example.world

The simulator should start and display the environment in 3D. If Gazebo dies with a segmentation fault or reports other xlib errors, try running again with a different render method specified in the configuration file.

2.6.3 Player

Run the autotools to generate the files necessary for the project configuration.

$ cd player

$ aclocal

$ autoheader

$ autoconf

$ automake --add-missing

Run the configure script. It is recommended to install Player to /usr/local as illustrated so the Python modules will be installed in the proper location.

$./configure --prefix=/usr/local

Build and install Player.

$ make

$ su

make install

2.7 Installing CATSim

CATSim contains a top-level Makefile to build all the separate modules in the architecture. To build CATSim, simply run make in the project directory.

$ cd catsim

$ make

Since CATSim is designed to be modified and augmented with additional algorithms and functionality, it will not be installed to any permanent location. Once it is built, CATSim can be run directly from the working directory. If Player and Gazebo have been installed in a non-standard location, the top level Makefile may need to be modified by assigning a variable to point to the top of the directory tree where Player and Gazebo reside.

2.8 Reference Documentation

2.8.1 Library Reference

GDAL:

http://www.remotesensing.org/gdal/
GSL:

http://www.gnu.org/software/gsl/
ODE:

http://ode.org/
OpenCV:

http://sourceforge.net/projects/opencvlibrary/
Proj.4:

http://proj.maptools.org/
Subversion:
http://subversion.tigris.org/
Swig:

http://www.swig.org/
wxPython:

http://www.wxpython.org/
2.8.2 Gazebo/Player Reference and Documentation

Manuals for both Gazebo and Player are available through the project webpage on Sourceforge.

Sourceforge project page:
http://playerstage.sourceforge.net/
Other instructions:

http://www.ece.osu.edu/ion/documents/ee683_player_gazebo.pdf
Section 3 EXECUTING CATSim

Running the CATSim environment requires the user to start several different processes that communicate via shared memory. Starting the CATSim processes from the command line can be difficult. Perhaps more difficult is stopping all the processes associated with CATSim. The Monitor program attempts to fix these difficulties by providing a means of automatically starting and stopping CATSim's processes. Monitor also displays status information for each process under its control, as well as a summary of the shared memory communication paths.

[image: image2.jpg]R4 monito

=1

navigator

pid:10381
path_planner

pid:10374
shm_alloc

pid:10370
target_animator

pid:10376
target_animator

pid:10375
target_animator

-command_ine:/home

-command_ine:/home

-command_ine:/home

-command_ine:/home

-command_ine:/home

Simulation Components.*]

command_line:/hom¢_|

task_list

asset_id: 0 (x,y) 25.274000 25
asset_id: 0 (x,y) 0.754000 0.56)
asset_id: 2 (x,y) 149.445000 14
target (x,y) 50.000000 60.0000(
target (x,y) 50.000000 70.0000(

Lsm Simulation

Quit

Name: adig ~ State:

Z (zombie) 5]

Figure 2: Monitor Program Window

Figure 2 shows a screen shot of the Monitor program. On the left is a listbox of all the processes under Monitor's control. Each process category in the list box has a command line and a process id. The middle listbox contains the names of three selectable shared memory structures from the CAT architecture. The contents of the selected shared memory structure is displayed in the rightmost listbox.

The simulation may be started and stopped by clicking on the “start simulation” button or “end simulation” button.

3.1 The XML Configuration File

Each simulation configuration requires an XML configuration file that Monitor then parses. The user may select a configuration file by selecting “File->Get XML Config file”.

The structure of the XML files is fairly simple. XML files are like configurable HTML files. The primary elements of XML files are tags and attributes. The overarching tag that defines the entire simulation is the “simulation” tag. A simple example of the simulation tag is shown below:

<simulation>

...everything else goes here...

</simulation>

The “simulation” tag must contain one of the following tags, each tag represents a processes in the CATSim environment:

1. shm_alloc

1. environment

2. asset_allocator

3. mission_planner

4. path_planner

A simple basic simulation setup could look like the following:

<simulation>

<shm_alloc>some descriptive text</shm_alloc>

<environment>some descriptive text</environment>

<asset_allocator>some descriptive text</asset_allocator>

<mission_planner>some descriptive text</mission_planner>

<path_planner>some descriptive text</path_planner>

</simulation>

However, the above XML does not have any information about where the executables for the CATSim processes may be found. Thus each of the above tags should contain a “command_line” attribute. An example is shown below:

<some_tag command_line=”some_path/executable”>descriptive text</some_tag>

The command_line attribute defines the shell command that is necessary for starting that particular CATSim process. Monitor will attempt to execute the strings defined as command_line attributes when the start button is pressed.

The “simulation” tag may also contain one or more of the following tags:

1. target_animator

2. navigator

There needs to be one “navigator” process for each asset in the simulation, while there needs to be one “target_animator” for each target in the simulation. The target_animator and navigator tags each have a command line attribute. A complete example configuration file follows:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE simulation SYSTEM "sim_setup.dtd">

<!-- @version: -->

<!-- <simulation exec_path="/home/martinj/simulation/CCCS/" data_path="/home/martinj/simulation/CCCS/heli_fly_demo/"> -->

<simulation>

<shm_alloc command_line="$(E_PATH)cccs_shared_mem/cccs_shm">shared_memory_allocation</shm_alloc>

<environment command_line="wxgazebo $(D_PATH)/uav_test.world">simulation_environment</environment>

<asset_allocator command_line="$(E_PATH)/asset_alloc/ast_alloc">asset_allocation</asset_allocator>

<mission_planner command_line="$(E_PATH)/m_plan/m_plan">mission_planner</mission_planner>

<path_planner command_line="$(E_PATH)/path_planner/path_planner">path_planner</path_planner>

<target_animator command_line="$(E_PATH)/target_animate/adtg 50 50">target_1</target_animator>

<target_animator command_line="$(E_PATH)/target_animate/adtg 50 60">target_2</target_animator>

<target_animator command_line="$(E_PATH)/target_animate/adtg 50 70">target_3</target_animator>

<navigator command_line="$(E_PATH)/navigator/navigator robot1 0 6667">asset_1</navigator>

<navigator command_line="$(E_PATH)/navigator/navigator robot2 1 6668">asset_2</navigator>

<navigator command_line="$(E_PATH)/navigator/navigator robot3 2 6669">asset_3</navigator>

</simulation>

The above XML is sprinkled with $(E_PATH) and $(D_PATH) variables. The $(E_PATH) and $(D_PATH) variables describe the executable path and the data path, respectively. These variables are either derived from a shell environment variable or they are attributes of the simulation tag. The actual values of $(E_PATH) and $(D_PATH) are substituted at parse time.

The tagged text, which is between the <some_tag> and </some_tag>, can be any descriptive text the user wants.

3.2 “CATSIM_DIR” Environment Variable and Simulation Attributes

The $(E_PATH) and $(D_PATH) variables may be set by setting the “exec_path” and “data_path” attributes of the simulation tag-- as shown below:

<simulation exec_path="/home/martinj/simulation/CCCS/" data_path="/home/martinj/simulation/CCCS/heli_fly_demo/">

If the “exec_path” and “data_path” attributes of <simulation> are not used, the environment variable CATSIM_DIR must exist and point to the location where CATSim is installed. Monitor will then assume that

$(E_PATH)=CATSIM_DIR and $(D_PATH)=CATSIM_DIR/data_files.

3.3 Simulation State

Some of the shared memory structures that define the state of the simulation may be viewed by clicking on the middle listbox where the “path_list”, “world” and “task_list” indicators may be found. If one selects “path_list”, the current state of the “path_list” shared memory is displayed in the right listbox. Similarly if one clicks “world” or “task_list” the corresponding data is shown in the right listbox.

3.4 Process State

The command line and process id for each process in the simulation may be found in the leftmost listbox. Clicking on the process id will cause the name and state of the process to be displayed to the right of the Quit button.

3.5 Running an Example Configuration File

CATSim has an example XML configuration file named mov_target_plain.xml which resides in the ./monitor directory. The monitor program can use this configuration file to start and keep track of a simple simulation consisting of two AAV and a single ground target. Use the File menu of the monitor program to read in “mov_target_plain.xml”. Press the “Start” button, and several windows will appear.

[image: image3.png]

Figure 3: Sample Camera View from Gazebo

The window shown in Figure 3 depicts a view above a Pioneer ground robot. The blue lines depict the detection regions for sonars and lasers from the SensorNet object. Currently, the ground robot is not being detected by the SensorNet. If you click an “x” into one of the check boxes shown in the screen shot in Figure 4, an interface window for moving the Pioneer ground robot will appear as shown in Figure 5.

[image: image4.png]Controls,

[1 OsuHeli : position : robotl
[1 GaminGPS : gps : robotlgps

[x] Pioneer2AT : position : PATL

[1 Pioneer2AT : sonar : PATL

[1 Pioneer2AT : power : PATL
[x]_ObserverCam : guicam : camera2
x] _GaminGPS : gps : PATlgps

[1 OsuHeli : position : robot2

[] ObserverCam : guicam : cameral
[1 GaminGPS : gps : robot2gps

time 334.646 115.420 0.000 [0.345] running.

Figure 4: Gazebo Simulation Control

If the “cmd lin vel x” slider bar is advanced, the ground robot will move forward into an area covered by the SensorNet, and an AAV asset will be assigned to go to the target’s location.

[image: image5.png]pose
vel

cmd vel

cmd lin vel x
cmd lin vel y
cmd lin vel 2
cmd ang vel x
cmd ang vel y
cmd ang vel 2

position [PAT1]
11.292 -0.000 0.000 : 0.0 0.0 -0.0

0.000 0,000 0.000: 0.0 0.0 0.0
0.000 0,000 0.000: 0.0 0.0 0.0

v

linear x10

angular x2

Stop

Figure 5: Ground Robot Control Window

Section 4 Module Descriptions

4.1 Data Structures

The data structures use in the CATSim implementation of the architecture are defined in the file “cccs.h”. Refer to Figure 1 for the relationship between individual modules and data structures.

4.1.1 World model

The “world” structure maintains overall general information about the agents and targets. This information is updated based on reports from agents and static sensors.

typedef struct {

 AssetStatus assets[MAX_ASSET_NUM];

 int num_assets;

 TargetStatus targets[MAX_TARGET_NUM];

 int num_targets;

 TerrainInfo terrain;

} World;

4.1.2 Task Structure

The “task” structure contains information about currently pending or executing tasks. At present, there are several “TaskType” defined:

· GOTO_POSITION: navigate to a specified (x,y,z) position

· TRACKING_TARGETS: follow a specified group of targets, the targets’ position is maintained in the world structure.

· REMAIN_AT_CURRENT_LOCATION: one and only one task of this type is generated for a mission, so that the “redundant” agents can be assigned to the task; or in the future, this task can be used after a “GOTO_POSITION” task has completed.

· FOLLOW_TRAJECTORY: A task of this type is essentially the same as an ordered set of “GOTO” tasks. The agent should follow this trajectory, except it may deviate to handle local, unforeseen circumstances, such as terrain or obstacles.

· SEARCH_REGION: a region is defined for each task of this type, which is defined by a polygon (currently a rectangle). Targets will be reported to the “world model”.

· EVALUATE_TERRAIN: similar to “search_region”, the terrain info will be reported to the “world model”.

· AVOID: a retreat task, when there is a foreseeable danger, agents assigned to this task will retreat to a safer place. In some cases, it is equivalent to “goto” task.

The actual task data structure is defined as below.

enum TaskType {

 GOTO_POSITION,

 TRACKING_TARGETS,

 REMAIN_AT_CURRENT_LOCATION,

 FOLLOW_TRAJECTORY,

 SEARCH_REGION,

 EVALUATE_TERRAIN,

 AVOID};

typedef struct {

 int task_id;

 AssetGroup ag;

 TaskType type;

 unsigned char task_data[TASK_DATA_SIZE];

} Task;

typedef struct {

 Task tasks[MAX_TASK_NUM];

 int num_tasks;

} TaskList;

4.1.3 Asset Status

The asset status data structure is defined below.

typedef struct {

 int asset_id;

 Position pos;

 Orientation rot;

 int asset_type;

 int max_speed;

 char capability[CAPABILITY_DATA_SIZE];

} AssetStatus;

typedef struct{

int assets_id[MAX_ASSET_NUM];

int num_assets;

} AssetGroup;

4.1.4 Target Status

The target status data structure is defined below.

typedef enum {

 ACTIVE,

 UNCONFIRMED,

 DESTROYED

} TargetState;

typedef struct {

 int target_id;

 Position pos;

 TargetState target_state;

 char target_desc[TARGET_DATA_SIZE];

} TargetStatus;

4.1.5 Task-Asset List

The Task-Asset assignment is not defined separately. The group of assets is a property of class “Task”. When a task is initiated, it doesn’t have any assets assigned and the asset-group is an empty group. The “asset-allocation” module assigns the assets to the tasks under constraints.

typedef struct {

 int task_id;

 AssetGroup ag;

 TaskType type;

 unsigned char task_data[TASK_DATA_SIZE];

} Task;

typedef struct{

int assets_id[MAX_ASSET_NUM];

int num_assets;

} AssetGroup;

4.1.6 Platform Paths

typedef struct {

 int asset_id;

 Position waypoints[MAX_WP_NUM];

 int num_waypoints;

} Asset_Path;

typedef struct {

 Asset_Path paths[MAX_ASSET_NUM];

 int num_paths;

} PathList;

4.2 Shared Memories

Three shared memories are created by the CATSim system

4.2.1 World Shared Memory

The “World” is created as a shared memory, which all the modules can access to.

The following function is defined for initializing the shared memory:

World *initialize_world_shared_memory(int key,int *shm_id_ret);

4.2.2 Task-List Shared Memory

Similarly, the “TaskList” is created as a shared memory that the “mission planner”, “asset allocation” and “platform path planner” can access according to Figure 1. The “UI” module can access the shared memory too. The initialization function:

TaskList *initialize_tasklist_shared_memory(int key,int *shm_id_ret);

4.2.3 Path-List Shared Memory

The “PathList” is created as a shared memory too. This memory contains the planned paths for every asset in the system. “Platform path planner” can read&write to the shared memory and “communication” module can only read the shared memory, as described in Figure 1. The initialization function:

PathList *initialize_pathlist_shared_memory(int key,int *shm_id_ret);

4.3 Module Descriptions

The functionality and potentially relevant algorithms for each module in the CATSim system and their relationship with each other has been described in Section 1. Their detailed description is as following:

4.3.1 Mission Planner

	Functionality:
	· Create initial tasks, according to mission;

· Create/Delete tasks according to the “world” status;

	Input:
	· Shared memory “world”;

· Shared memory “Task-List”;

	Output:
	· Shared memory “Task-List”;

	Pseudo Code:
	Begin

initialize shared memories;

create initial tasks in “Task-List”;

while (1)

delete expired/finished tasks;

remove finished targets;//maybe removed by other module

// define event-action pairs in the following

if (new targets located) create “Goto” task;

if (new targets detected) create “Search” task;

.

end

end

	Algorithms:
	Task-Scheduling;

	Major Code File:
	m_plan.cpp

	Note:
	Define event-task pairs here.

The “Remain_at_current_location” task is created as one of initial tasks.

4.3.2 Asset Allocation Module

	Functionality:
	· Assign asset to existing tasks;

	Input:
	· Shared memory “world”;

· Shared memory “Task-List”;

	Output:
	· Shared memory “Task-List”;

	Pseudo Code:
	Begin

initialize shared memories;

while (1)

find all unassigned assets;

// either new assets or assets in “remain” task;

sort all unassigned tasks according to priority;

// define your own priority!

// implement your resource allocation algorithm:

step 1: assign unassigned assets to tasks;

setp 2: reassign assets in lower priority task to those with higher priority;

end

end

	Algorithms:
	Resource Allocation;

	Major Code File:
	asset_alloc.cpp

	Note:
	The allocation algorithm has to satisfy the allocation constraints.

It is recommended to avoid reassigning assets to different tasks in each loop, if not necessary.

4.3.3 Platform Path Planner

	Functionality:
	· Generate preliminary path for each asset;

	Input:
	· Shared memory “world”;

· Shared memory “Task-List”;

	Output:
	· Shared memory “Paths-List”;

	Pseudo Code:
	Begin

initialize shared memories;

while (1)

for (each task)

if (a “remain” task)

for each of assets in the task:

generate circular path at current position for AAVs.

generate onepoint path at current position for AGVs.

if (a “goto” task)

for each of assets in the task:

generate preliminary path according to terrain data, or just several straight points connecting to goal position for simple cases.

//implement your cooperative search algorithm

if (a “search-region” task)

generate cooperative paths for each of assets in the task.

. // other types of task

end

end

end

	Algorithms:
	Cooperative search algorithm;

Global path planning algorithm;

	Major Code File:
	path_planner.cpp

	Note:
	Define all path-planning methods for the task types you may encounter in experiment.

The safety issue concern is suggested in the path planning. Or you can leave the collision-avoidance/obstacle-avoidance to the asset navigation controller.

4.3.4 User Interface

	Functionality:
	Report status to the user;

	Input:
	· All shared memories.

· GUI

	Output:
	 GUI

	Major Code File:
	main.cpp MainWindow.cpp : under “ui” directory

4.3.5 Communication Channel

When CATSim used in simulation mode, the data exchange is done through shared-memories.

When CATSim used in controlling physical AAVs and AAGVs, data exchange is via a network protocol under development.

4.3.6 Static Sensors

Suspicious activity nearby static sensors will be reported to the world model as a target. The TargetStatus module provides one implementation of a simple target tracking algorithm using data from the sensor network model in Gazebo. Targets in the world model are given a timestamp from their last measurement, and targets are aged so that old targets may expire if not detected after a certain period of time.

4.3.7 AAV controller & AGV Local Navigator

The simulation version codes are under “navigator” directory.

The version used by an actual robot agent is installed onboard and can receive path-data via UDP.

Both of them should cause the platforms to follow the preliminary path and also circumnavigate obstacles.

4.4 Objects added to Gazebo

The Gazebo virtual environment provides the user with the ability to create and customize the objects that inhabit it. In the course of developing CATSim, the following new and customized Gazebo objects have been created.

4.4.1 SensorNet

The “SensorNet” model provides a simulated network of overlapping scanning range finders.

A sensor network, in this context, is a collection of nodes, each with multiple sensors. Each sensor is modeled as a range finder capable of returning a single range measurement. Internally, each sensor maintains a set of rays, fanning out across its field of view. Any object intersecting these rays within the field of view of the sensor will be reported as a target to the network.

This model takes a set of parameters in the Gazebo world file.

	Parameter
	Description

	X,y,z
	Center of the node distribution (meters, meters, meters)

	updateRate
	Network update rate (Hz)

	mask
	Decimal mask applied bitwise to enable/disable each sensor on all nodes. (255 to enable all)

	placementMode
	Mode of distributing sensors in the world:

'uniform' – Creates a grid of sensors with set spacing

'random' – Creates a random distribution over a set area

'custom' – Reads node positions from a configuration file

	numNodes
	Maximum number of sensor nodes to create

	nodeSpacing
	Spacing between each sensor node (meters)

	area
	Size of area over which nodes are distributed (meters, meters)

	placementFile
	Name of file containing the location of each node to be created. file is of the following format:

x,y,z,roll,pitch,yaw

where x,y,z are in meters, roll,pitch,yaw are Euler angles in radians [0,PI/2)

The data collected by the sensor network is written to shared memory and used by CATSim to track targets moving through the environment.

4.4.2 INS

The INS model simulates an inertial measurement unit, capable of reporting linear and rotational velocity and acceleration. This model has the added capability to report absolute position and orientation.

The Ins model has an associated interface through Player that allows clients to access this measurement data. The new interface is called InsProxy and is defined in 'playerclient.h' as follows

class InsProxy : public ClientProxy

{

 public:

 InsProxy(PlayerClient* pc, unsigned short index,

 unsigned char access = 'c')

 : ClientProxy(pc,PLAYER_INS_CODE,index,access) {}

 ~InsProxy() {}

 // These methods are the user's interface to this device

 void FillData(player_msghdr_t hdr, const char* buffer);

 void Print();

 /// Linear position (meters)

 double x, y, z;

 /// Linear velocity (meters/sec)

 double v_x, v_y, v_z;

 /// Linear acceleration (meters/sec/sec)

 double a_x, a_y, a_z;

 /// Rotational position (degrees)

 double roll, pitch, yaw;

 /// Rotational velocity (degrees/sec)

 double v_roll, v_pitch, v_yaw;

 /// Rotational acceleration (degrees/sec/sec)

 double a_roll, a_pitch, a_yaw;

};

4.4.3 OsuHeli

OsuHeli is a modification of the AvatarHeli object that comes with Gazebo. Both objects represent AAV helicopters. While the AvatarHeli object accepts only velocity commands, the OsuHeli object accepts position commands, which can direct its motion to the commanded position. The position command is passed to the OsuHeli object through the AvatarHeli’s velocity command methods.

4.4.4 Osu2AT

Osu2AT is a modification of the Pioneer2AT gazebo object. These objects represent small ground robots. Similar to the OsuHeli, the Osu2AT accepts position commands, while the Pioneer2AT only accepts velocity commands. The Osu2AT’s position commands are passed through the same method as OsuHeli. Thus, as far as the path planning algorithm is concerned, there is no difference between the OsuHeli and Osu2AT gazebo objects.

User’s Manual

Version 1.0

10 March 2006

The Cooperative Center of Control Science at

The Ohio State University

CATSim:

THE COOPERATIVE ALGORITHMS

TESTBED

SIMULATOR

